网站内容均是收集整理自网络,作为学习交流使用,请勿用于商业用途。

深度学习入门4:强化学习
chinese

深度学习入门4:强化学习

作者:[日] 斋藤康毅
25
10
ISBN:9787115649171
出版社:人民邮电出版社
发布时间:2024年8月
页数:333
更新时间:2025年2月13日
点击下载按钮会自动复制 提取码,跳转到下载页面后直接粘贴即可

本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续“鱼书”系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。

编辑推荐

沿袭“鱼书”系列风格,提供实际代码,边实践边学习,无须依赖外部库,从零开始实现支撑强化学习的基础技术。

本书有什么特点?

●把握潮流中的变与不变

在快速发展变化的深度学习领域,有变化的事物,有不变的事物。有些事物会随潮流而消逝,有些则会被传承下去。本书从马尔可夫决策过程、贝尔曼方程、蒙特卡洛方法、时间差分法等强化学习基础方法,自然而然地过渡到神经网络和深度学习,从前沿视角为读者遴选出最值得关注的强化学习理论和方法。

●内容丰富,讲解简明易懂

作为超高人气“鱼书”系列第四部作品,本书延续了这一系列的写作和讲解风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,能够让人非常信服地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。

●原理与实践并重

本书旨在确保读者能够牢固掌握强化学习的独特理论,奉行“只有做出来才能真正理解”的理念,将这一主题的每个构成要素都从“理论”和“实践”两个方面进行详尽解释,并鼓励读者动手尝试。与仅通过数学公式解释理论的图书不同,读者将通过实际运行本书代码获得许多令人惊叹的领悟。