Deep Learning

语言: | english |
作者: | Ian Goodfellow |
出版社: | The MIT Press |
发布时间: | 2016年11月 |
系列: | Adaptive Computation and Machine Learning |
页数: | 800 |
ISBN: | 9780262035613 |
内容简介
"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
下载
如果上方的下载按钮无法下载,可以使用此处的下载地址手动跳转。
下载地址:https://pan.quark.cn/s/fd3419f8c59d
提取码:BRjq
本站所有资源均经过人工检查,确保质量。每一个都是互联网上能收集到的质量最好的版本。对于多个版本的书籍,一般只收录最新版本。
本站所有资源均免费,如果您觉得还行,请分享给更多的人。如果您有任何问题,或者想贡献更优质的版本,可以点击下方【建议/报告问题】按钮提交。